estimates_gdr3_rv (gaiadr3_contrib.estimates_gdr3_rv)

The table has 184905568 rows, 20 columns.

Description

Radial velocity predictions for all Gaia DR3 stars without radial velocity measurements and with G-band magnitude brighter than 17.5. The predictions are generated by a Bayesian neural network model trained on the DR3 RVS sample. The model generates full posterior distributions, which are summarised in this catalogue as 4-component Gaussian mixtures.

Attribution

Aneesh Naik is funded by an Early Career Fellowship from the Leverhulme Trust.

Axel Widmark receives funding from the Carlsberg Foundation via a Semper Ardens grant (CF15-0384).

Training the model and generating the catalogue used the Cirrus UK National Tier-2 HPC Service at EPCC (http://www.cirrus.ac.uk) funded by the University of Edinburgh and EPSRC (EP/P020267/1).

Columns

Name Type UCD Unit Description
source_id long meta.id

Unique source identifier (unique within a particular Data Release)

sample_mean float stat.mean
spect.dopplerVeloc
km.s**-1

Mean of radial velocity posterior

sample_std float stat.stdev
spect.dopplerVeloc
km.s**-1

Standard deviation of radial velocity posterior

q050 float stat.value
spect.dopplerVeloc
km.s**-1

5th percentile of radial velocity posterior

q159 float stat.value
spect.dopplerVeloc
km.s**-1

15.9th percentile velocities for each star

q500 float stat.value
spect.dopplerVeloc
km.s**-1

50th percentile velocities for each star

q841 float stat.value
spect.dopplerVeloc
km.s**-1

84.1th percentile velocities for each star

q950 float stat.value
spect.dopplerVeloc
km.s**-1

95.5th percentile velocities for each star

w_0 float stat.weight

Weight of Gaussian component 0. (w0+w1+w2+w3) = 1.0

w_1 float stat.weight

Weight of Gaussian component 1. (w0+w1+w2+w3) = 1.0

w_2 float stat.weight

Weight of Gaussian component 2. (w0+w1+w2+w3) = 1.0

w_3 float stat.weight

Weight of Gaussian component 2. (w0+w1+w2+w3) = 1.0

mu_0 float stat.mean
spect.dopplerVeloc
km.s**-1

Mean of Gaussian component 0.

mu_1 float stat.mean
spect.dopplerVeloc
km.s**-1

Mean of Gaussian component 1.

mu_2 float stat.mean
spect.dopplerVeloc
km.s**-1

Mean of Gaussian component 2.

mu_3 float stat.mean
spect.dopplerVeloc
km**2.s**-2

Mean of Gaussian component 3.

var_0 float stat.variance km**2.s**-2

Variance of Gaussian component 0.

var_1 float stat.variance km**2.s**-2

Variance of Gaussian component 1.

var_2 float stat.variance km**2.s**-2

Variance of Gaussian component 2.

var_3 float stat.variance km**2.s**-2

Variance of Gaussian component 3.